Option pricing using multivariate Lévy processes

نویسندگان

  • Christoph Winter
  • Nils Reich
چکیده

For d-dimensional Lévy models we provide a method for Finite Element-based asset pricing. We derive the partial integrodifferential pricing equation and prove that the corresponding variational problem is well-posed. Hereto, an explicit characterization of the domain of the bilinear form is given. For the numerical implementation the problem is discretized by sparse tensor product Finite Element spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pricing Foreign Equity Option with time-changed Lévy Process

In this paper we propose a general foreign equity option pricing framework that unifies the vast foreign equity option pricing literature and incorporates the stochastic volatility into foreign equity option pricing. Under our framework, the time-changed Lévy processes are used to model the underlying assets price of foreign equity option and the closed form pricing formula is obtained through ...

متن کامل

Option Pricing with Lévy-Stable Processes

In this paper we show how to calculate European-style option prices when the log-stock and stock returns processes follow a symmetric Lévy-Stable process. We extend our results to price European-style options when the log-stock process follows a skewed Lévy-Stable process.

متن کامل

Time-Changed Lévy Processes and Option Pricing

The classic Black-Scholes option pricing model assumes that returns follow Brownian motion, but return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to non-normal return innovations. Second, return volatilities vary stochastically over time. Third, returns and their volatilities are correlated, often negatively for equities. Time-change...

متن کامل

Option Pricing under Generalized Lévy Processes with State Dependent Parameters and the Volatility Surface

This paper presents a very general option pricing formula incorporating both the Lévy process methodology and the level dependent volatility approach. An approximate solution to the pricing problem is obtained throughout the construction of a parametrix by means of the pseudo differential calculus. Some examples are provided to illustrate the comprehensiveness of the framework. Finally, the imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008